Answer : The correct answer for mole ratio of H₂O : H₃PO₄ = 6: 4 .
Mole ratio :
It is defined as mole of one substance to another substance in a balanced reaction . In the balanced reaction , the coefficient written before the substances are taken as moles of that substance.
The given balanced reaction between P₄H₁₀ and H₂O is :
P₄O₁₀ + 6 H₂O → 4 H₃PO₄
Mole of H₂O = 6
Mole of H₃PO₄ = 4
Hence mole ratio of Water : H₃PO₄ = 6 : 4
Answer:
0.952 °C
Explanation:
The change in melting point is computed as:
ΔT = k*m*i
where ΔT is the difference between the melting point of water and of solution, k is a constant (1.86 °C*kg/mol for water), i is the van't Hoff factor (equal to 2 for sodium chloride because 2 ions are obtained after its dissolution), and m is the molality of the solution.
Molar mass of sodium chloride: 58.44 g/mol
Moles of of sodium chloride: mass / molar mass 3.5/58.44 = 0.059 mol
Density of water 1 kg/L
230 mL of water are equivalent to 0.23 L
mass of water: density * volume = 1*0.23 = 0.23 kg
Molality of the solution: m = moles of solute/ kg of solvent = 0.059/0.23 = 0.256
Finally:
ΔT = 1.86*0.256*2 = 0.952 °C
Water melting point: 0 °C
So, the solution melting point is: 0 - 0.952 = 0.952 °C
Types of Bonds can be predicted by calculating the difference in electronegativity.
If, Electronegativity difference is,
Less than 0.4 then it is Non Polar Covalent
Between 0.4 and 1.7 then it is Polar Covalent
Greater than 1.7 then it is Ionic
For Be and F,
E.N of Fluorine = 3.98
E.N of Beryllium = 1.57
________
E.N Difference 2.41 (Ionic Bond)
For H and Cl,
E.N of Chorine = 3.16
E.N of Hydrogen = 2.20
________
E.N Difference 0.96 (Polar Covalent Bond)
For Na and O,
E.N of Oxygen = 3.44
E.N of Sodium = 0.93
________
E.N Difference 2.51 (Ionic Bond)
For F and F,
E.N of Fluorine = 3.98
E.N of Fluorine = 3.98
________
E.N Difference 0.00 (Non-Polar Covalent Bond)
Result:
A polar covalent bond is formed between Hydrogen and Chlorine atoms.
Answer:
false
Explanation: