Answer:
A. the highest
Kepler's third law allows finding the answers for the orbital speed of the planets are:
Kepler measured and analyzed the astronomical data of him and his tutor Brake, finding mathematical relationships that describe the movement of the planet, they are called Kepler's laws
1. The orbits are ellipses
2. A vector from the sun to the planet travels equal areas in equal times
3. A relationship between the period and the semi-major axis of the orbit.
Kepler's third law is an application of Newton's second law to the motion of the planets around the sun.
Newton's second law establishes a relationship between force and the product of mass and acceleration of the object; in this case the force is the gravitational attractive force
F = m a
F =
Wher M y m are sum and planet mass, r is the distance ang G constnate universal gravitation
They indicate that we consider the orbits as circular, in this case the acceleration is centripetal
a =
Let's substitute
(1)
The modulus of velocity (speed) is constant so we can use the uniform motion ratio
v =
For a complete orbit, the distance traveled is the length of the circle and the time is called the period.
Δx = 2π r
we substitute
T² = ( ) r³
They ask to calculate the orbital velocity we can use the relation 1
v =
Let's find the value of the constant
=
In the table we have the tabulated values for the radii of the orbits of the planets
planet radius orbit (m) velocity (m/s)
Mercury 5.79 10¹⁰ 4.779 10⁴
Venus 1.08 10¹¹ 3.499 10⁴
Land 1,496 10¹¹ 2,973 10⁴
Mars 2.28 10¹¹ 2.408 10⁴
Jupiter 7.78 10¹¹ 1.304 10⁴
Saturn 1.43 10¹² 9.62 10³
Uranus 2.87 10¹² 6.79 10³
Neptune 4.50 10¹² 5.42 10³
Pluto 5.91 10¹² 4.73 10³
We calculate the speed of some as an example and the others are in the third column of the table
Mercury
v =
v = 4.779 10⁴ m / s
Venus
v =
v = 3,499 10⁴ m / s
They ask to know the planet that has maximum and minimum orbital speed.
After reviewing the calculations, and observed the table, Mercury has the highest speed and Pluto is the one with the lowest orbital speed.
When examining the expression the velocity is inversely proportional to the square root of the radius of the orbit
The radius of the orbit of Ceres is r = 2.766 ua ( ) = 4.11 10¹¹ m
the orbital velocity of Ceres is
v =
v = 1.79 10⁴ m / s
those that correspond to a speed between Mars and Jupiter
In conclusion using Kepler's third law we can find the answers for the orbital speed of the planets are:
Learn more here: brainly.com/question/9622816
The free enterprise system allows the citizen to own and operate a private business for profit.
The basic principles of a free enterprise system were laid out by Scottish philosopher Adam Smith in an influential book published in 1776: An Inquiry into the Nature and Causes of the Wealth of Nations. The Nobel-prize winning 20th century economist Milton Friedman said of Adam Smith, "The key insight of Adam Smith's Wealth of Nations is misleadingly simple: If an exchange between two parties is voluntary, it will not take place unless both believe they will benefit from it." Smith argued for such voluntary exchanges within a free market system. He labeled the government-manipulated economic system that was prevailing in his day as "mercantilism," a system in which governments specifically authorized some merchants as the official agents of commerce (rather than endorsing free enterprise). The mercantilist system also viewed wealth as though there were a fixed amount of it available in the world, represented by precious metals such as gold and silver, and that nations were in competition over who got more of that fixed amount of world wealth. Smith saw that wealth was something that could be created and increased through voluntary exchange and free enterprise. Smith's ideas formed the basis for what we have come to know as capitalism.